The /^-operator and the Galerkin Method for Strongly Elliptic Equations on Smooth Curves: Local Estimates

نویسنده

  • THANH TRAN
چکیده

Superconvergence in the L2-norm for the Galerkin approximation of the integral equation Lu = f is studied, where I is a strongly elliptic pseudodifferential operator on a smooth, closed or open curve. Let Uf, be the Galerkin approximation to u . By using the ^-operator, an operator that averages the values of uh , we will construct a better approximation than uh itself. That better approximation is a legacy of the highest order of convergence in negative norms. For Symm's equation on a slit the same order of convergence can be recovered if the mesh is suitably graded.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Error Estimates for Some Petrov-Galerkin Methods Applied to Strongly Elliptic Equations on Curves

In this article we derive local error estimates for some Petrov-Galerkin methods applied to strongly elliptic equations on smooth curves of the plane. The results, e.g., cover the basic first-kind and second-kind integral equations appearing in the boundary element solution of the potential problem. The discretization model includes the Galerkin method and the collocation method using smoothest...

متن کامل

A numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method

In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.

متن کامل

Multi-level Higher Order Qmc Galerkin Discretization for Affine Parametric Operator Equations

We develop a convergence analysis of a multi-level algorithm combining higher order quasi-Monte Carlo (QMC) quadratures with general Petrov-Galerkin discretizations of countably affine parametric operator equations of elliptic and parabolic type, extending both the multi-level first order analysis in [F.Y. Kuo, Ch. Schwab, and I.H. Sloan, Multi-level quasi-Monte Carlo finite element methods for...

متن کامل

USING FRAMES OF SUBSPACES IN GALERKIN AND RICHARDSON METHODS FOR SOLVING OPERATOR EQUATIONS

‎In this paper‎, ‎two iterative methods are constructed to solve the operator equation $ Lu=f $ where $L:Hrightarrow H $ is a bounded‎, ‎invertible and self-adjoint linear operator on a separable Hilbert space $ H $‎. ‎ By using the concept of frames of subspaces‎, ‎which is a generalization of frame theory‎, ‎we design some  algorithms based on Galerkin and Richardson methods‎, ‎and then we in...

متن کامل

A posteriori estimates of inverse operators for boundary value problems in linear elliptic partial differential equations

A posteriori estimates of inverse operators for boundary value problems in linear elliptic partial differential equations Abstract This paper presents constructive a posteriori estimates of inverse operators for boundary value problems in linear elliptic partial differential equations (PDEs) on a bounded domain. This type of estimates plays an important role in the numerical verification of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010